Classification Systems for Bacterial Protein-Protein Interaction Document Retrieval

نویسندگان

  • Hongfang Liu
  • Manabu Torii
  • Guixian Xu
  • Johannes Goll
چکیده

Protein-protein interaction (PPI) networks are essential to understand the fundamental processes governing cell biology. Recently, studying PPI networks becomes possible due to advances in experimental high-throughput genomics and proteomics technologies. Many interactions from such high-throughput studies and most interactions from small-scale studies are reported only in the scientific literature and thus are not accessible in a readily analyzable format. This has led to the birth of manual curation initiatives such as the International Molecular Exchange Consortium (IMEx). The manual curation of PPI knowledge can be accelerated by text mining systems to retrieve PPI-relevant articles (article retrieval) and extract PPI-relevant knowledge (information extraction). In this article, the authors focus on article retrieval and define the task as binary classification where PPI-relevant articles are positives and the others are negatives. In order to build such classifier, an annotated corpus is needed. It is very expensive to obtain an annotated corpus manually but a noisy and imbalanced annotated corpus can be obtained automatically, where a collection of positive documents can be retrieved from existing PPI knowledge bases and a large number of unlabeled documents (most of them are negatives) can be retrieved from PubMed. They compared the performance of several machine learning algorithms by varying the ratio of the number of positives to the number of unlabeled documents and the number of features used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Skips for Faster Postings List Intersection

Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...

متن کامل

Improved Skips for Faster Postings List Intersection

Information retrieval can be achieved through computerized processes by generating a list of relevant responses to a query. The document processor, matching function and query analyzer are the main components of an information retrieval system. Document retrieval system is fundamentally based on: Boolean, vector-space, probabilistic, and language models. In this paper, a new methodology for mat...

متن کامل

Central mineralocorticoid receptors mediate impairing effects of corticosterone on memory retrieval in rats

Introduction: Previous studies have indicated that stress levels of glucocorticoid hormones induce impairment of long term memory retrieval, but the underlying mechanisms (genomic or non-genomic) are not clear. To clarify this issue, we investigated the involvement of brain corticosteroid receptors and protein synthesis in the glucocorticoid-induced impairment of memory retrieval. Methods: 140 ...

متن کامل

GENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION

This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...

متن کامل

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJCMAM

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010